Efficient Implementation of Inner-Outer Flexible GMRES for the Method of Moments Based on a Volume-Surface Integral Equation

نویسندگان

  • Hidetoshi Chiba
  • Toru Fukasawa
  • Hiroaki Miyashita
  • Yoshihiko Konishi
چکیده

This paper presents flexible inner-outer Krylov subspace methods, which are implemented using the fast multipole method (FMM) for solving scattering problems with mixed dielectric and conducting object. The flexible Krylov subspace methods refer to a class of methods that accept variable preconditioning. To obtain the maximum efficiency of the inner-outer methods, it is desirable to compute the inner iterations with the least possible effort. Hence, generally, inaccurate matrix-vector multiplication (MVM) is performed in the inner solver within a short computation time. This is realized by using a particular feature of the multipole techniques. The accuracy and computational cost of the FMM can be controlled by appropriately selecting the truncation number, which indicates the number of multipoles used to express far-field interactions. On the basis of the abovementioned fact, we construct a less-accurate but much cheaper version of the FMM by intentionally setting the truncation number to a sufficiently low value, and then use it for the computation of inaccurate MVM in the inner solver. However, there exists no definite rule for determining the suitable level of accuracy for the FMM within the inner solver. The main focus of this study is to clarify the relationship between the overall efficiency of the flexible inner-outer Krylov solver and the accuracy of the FMM within the inner solver. Numerical experiments reveal that there exits an optimal accuracy level for the FMM within the inner solver, and that a moderately accurate FMM operator serves as the optimal preconditioner. key words: flexible GMRES, integral equation methods, method of moments, multilevel fast multipole algorithm, Krylov subspace methods

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress Waves in a Generalized Thermo Elastic Polygonal Plate of Inner and Outer Cross Sections

The stress wave propagation in a generalized thermoelastic polygonal plate of inner and outer cross sections is studied using the Fourier expansion collocation method. The wave equation of motion based on two-dimensional theory of elasticity is applied under the plane strain assumption of generalized thermoelastic plate of polygonal shape, composed of homogeneous isotropic material.  The freque...

متن کامل

Comparison of Two Kinds of Functionally Graded Cylindrical Shells with Various Volume Fraction Laws for Vibration Analysis

In this paper, a study on the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. The effects of the FGM configuration are taken into account by studying the frequencies of two FG cylindrical shells. Type I FG cylindrical shell has nickel on its inner surface and stainless steel on its outer surface and Type II...

متن کامل

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

Ssor Preconditioned Inner-outer Flexible Gmres Method for Mlfmm Analysis of Scat- Tering of Open Objects

To efficiently solve large dense complex linear system arising from electric field integral equations (EFIE) formulation of electromagnetic scattering problems, the multilevel fast multipole method (MLFMM) is used to accelerate the matrix-vector product operations. The inner-outer flexible generalized minimum residual method (FGMRES) is combined with the symmetric successive overrelaxation (SSO...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 94-C  شماره 

صفحات  -

تاریخ انتشار 2011